ZnO nanorods/ZnS·(1,6-hexanediamine)(0.5) hybrid nanoplates hierarchical heteroarchitecture with improved electrochemical catalytic properties for hydrazine.

نویسندگان

  • Zhengcui Wu
  • Yaqin Wu
  • Tonghui Pei
  • Huan Wang
  • Baoyou Geng
چکیده

Novel hierarchical heteronanostructures of ZnO nanorods/ZnS·(HDA)0.5 (HDA = 1,6-hexanediamine) hybrid nanoplates on a zinc substrate are successfully synthesized on a large scale by combining hydrothermal growth (for ZnO nanorods) and liquid chemical conversion (for ZnS·(HDA)0.5 nanoplates) techniques. The formation of ZnS·(HDA)0.5 hybrid nanoplates branches takes advantage of the preferential binding of 1,6-hexanediamine on specific facets of ZnS, which makes the thickening rate much lower than the lateral growth rate. The ZnS·(HDA)0.5 hybrid nanoplates have a layered structure with 1,6-hexanediamine inserted into interlayers of wurtzite ZnS through the bonding of nitrogen. The number density and thickness of the secondary ZnS·(HDA)0.5 nanoplates can be conveniently engineered by variation of the sulfur source and straightforward adjustment of reactant concentrations such as 1,6-hexanediamine and the sulfur source. The fabricated ZnO/ZnS·(HDA)0.5 heteronanostructures show improved electrochemical catalytic properties for hydrazine compared with the primary ZnO nanorods. Due to its simplicity and efficiency, this approach could be similarly used to fabricate varieties of hybrid heterostructures made of materials with an intrinsic large lattice mismatch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods

ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7-46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ...

متن کامل

Control of ZnO morphologies on carbon nanotube electrodes and electrocatalytic characteristics toward hydrazine.

We controlled the morphologies of zinc oxide (ZnO) nanostructures on single-walled carbon nanotube electrodes by an electrochemical deposition method and investigated the dependence of the electrocatalytic characteristics toward hydrazine on the different morphologies. ZnO nanorods provided high electrocatalytic activity with unique electrochemical behaviours, associated with the H(+) ion gener...

متن کامل

Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material

Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...

متن کامل

Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies.

The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with exposed (0001) and (10̄10) crystal surfaces, respectively, were synthesized through facile solvothermal methods. The gas-sensing results show that sensitivity of the ZnO nanopla...

متن کامل

Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties

Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2014